- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Evolutionary algorithms for nurse scheduling problem
Description
The nurse scheduling problem (NSPs) represents a difficult class of multi-objective optimisation problems consisting of a number of interfering objectives between the hospitals and individual nurses. The objective of this research is to investigate difficulties that occur during the solution of NSP using evolutionary algorithms, in particular genetic algorithms (GA). As the solution method a population-less cooperative genetic algorithm (CGA) is taken into consideration. Because contrary to competitive GAs, we have to simultaneously deal with the optimization of the fitness of the individual nurses and also optimization of the entire schedule as the final solution to the problem in hand. To confirm the search ability of CGA, first a simplified version of NSP is examined. Later we report a more complex and useful version of the problem. We also compare CGA with another multi-agent evolutionary algorithm using pheromone style communication of real ants. Finally, we report the results of computer simulations acquired throughout the experiments.
Journal
-
- Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)
-
Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512) 1 196-203, 2002-11-07
IEEE