- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Long-term warming weakens stabilizing effects of biodiversity in aquatic ecosystems
Description
<jats:title>Abstract</jats:title><jats:p>Despite the consensus that warming will affect biodiversity, alter physicochemical environments, and disrupt biological interactions, the relative importance of these key processes and how they interact to determine overall ecosystem function is poorly understood. Here, we analyze long-term (16∼39 years) time series data from ten aquatic ecosystems and use convergent cross mapping (CCM) to quantify the hidden causal network linking species diversity, ecosystem function, and physicochemical factors. We observe that aquatic ecosystems subject to stronger warming exhibit decreased stability (larger fluctuations in phytoplankton biomass). We further show that this effect can be attributed to a weakening of stabilizing causal pathways between biodiversity, nutrient cycling, and phytoplankton biomass. Thus, rather than thinking in terms of separate factors, a more holistic view, that causally links biodiversity and the other ecosystem components, is required to understand and predict climate impacts on the temporal stability of aquatic ecosystems.</jats:p>