- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Pelargonic acid vanillylamide alleviates hepatic autophagy and ER stress in hepatic steatosis model
Search this article
Description
Pelargonic acid vanillylamide (PAVA) has been shown to reduce hepatic lipid accumulation in an obese rat model, however the underlying mechanism responsible for regulating lipid metabolism remains unclear. This study investigated the molecular mechanisms invoked by PAVA in regulating lipogenesis, autophagy, and endoplasmic reticulum (ER) stress in obese rats. Male Sprague-Dawley rats were fed on a diet consisting of 65.26% fat (16 weeks) and HepG2 cells were incubated with 200 μM oleic acid (OA) plus 100 μM palmitic acid (PA) for 48 h. These treatments resulted in a steatosis model. PAVA was shown to reduce fat deposition in hepatocytes in HepG2 by reducing lipotoxicity, the triglyceride content, the expression of sterol regulatory element binding protein 1c (SREBP-1c) and fatty acid synthase (FASN). PAVA also significantly reduced the calcium level and the expression of calpain 2 and upregulated the expression of Atg7 in comparison to the HFD group. In addition, PAVA was shown to significantly decrease the expression of autophagy pathway-related proteins including LC3 and p62. Treatment with PAVA (1 mg/day) reduced the expressions of ER stress markers Bip, ATF6 (p50), p-IRE1/IRE1, p-eIF2α/eIF2α, pJNK, CHOP and cleaved CASP12. In conclusion, PAVA ameliorated obesity induced hepatic steatosis by attenuating defective autophagy and ER stress pathways.
Journal
-
- Food and Chemical Toxicology
-
Food and Chemical Toxicology 180 113987-, 2023-10-01
Elsevier BV