Omnidirectional shape measurement using reliability evaluation value in Fourier transform

この論文をさがす

説明

Non-contacting shape measurement for 3-D objects is important in automated manufacturing, quality control of components, 3-D solid modeling, etc. Optical measurement of omnidirectional shape has been done by rotating an object and/or measuring it from different directions. We previously proposed a phase-shifting method using Fourier transform (PSM/FT) and a multi-reference-planes method (MRPM) to obtain geometric parameters without influence of lens distortions. Both a measured object and a reference object are simultaneously measured from different directions. All partial point-clouds can be merged into one global coordinate system by a transform matrix calculated from the reference column on a rotary stage. 360-deg 3-D shape can be measured using the above method. In the PSM/FT, since the initial phase information is determined from only the first frequency of the Fourier spectrum of the phase-shifted intensity values at each point of an object and the frequency components higher than the first frequency almost depend on noise, almost experimental noise can eliminated. The phase reliability evaluation value using Fourier transform (PREV/FT) is, therefore, defined as the ratio of the first frequency component of the Fourier spectrum to the average of the frequency components higher then the first frequency of the Fourier spectrum. The PREV/FT is useful to merge data when measurement conditions are changed. In this paper, we propose a method that all partial data can be merged into global coordinates using the PREV/FT on overlapped areas and omnidirectional shape measurement is achieved.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1870302167805975552
  • DOI
    10.1117/12.648709
  • ISSN
    0277786X
  • データソース種別
    • OpenAIRE

問題の指摘

ページトップへ