説明
Unitary 2-designs are random unitary matrices which, in contrast to their Haar-distributed counterparts, have been shown to be efficiently realized by quantum circuits. Most notably, unitary 2-designs are known to achieve decoupling, a fundamental primitive of paramount importance in quantum Shannon theory. Here we prove that unitary 2-designs can be implemented approximately using random diagonal-unitaries.
- Tweet
キーワード
- Computation theory
- Quantum circuit
- commuting quantum circuits
- Matrix algebra
- Quantum cryptography
- Random unitary matrices
- Quantum communication
- Konferenzschrift
- Dewey Decimal Classification::500 | Naturwissenschaften
- Unitary 2-designs
- Quantum computers
- Reconfigurable hardware
- unitary 2-designs
- Quantum shannon theories
- Cryptography
- Unitary matrix
- Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik
- Commuting quantum circuits
- Logic circuits
詳細情報 詳細情報について
-
- CRID
- 1870302167852324480
-
- 本文言語コード
- en
-
- データソース種別
-
- OpenAIRE
- Crossref