- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Wavelength dependence of laser-induced damage in fused silica and fused quartz
Search this article
Description
Laser-induced damage threshold (LIDT) of various types of vitreous silica at 1064, 532, 355 and 266 nm was investigated. At 1064 nm no difference of LIDT was observed for all samples. At 1064-355 nm, wavelength-dependence of LIDT of synthetic fused silica (SFS) can be well described by a relation Ith equals 1.45 (lambda) 0.43, where Ith is LIDT in J/cm2 and (lambda) is wavelength in nm. At 266 nm, however, LIDTs were smaller than a half of the calculated value from above relation. This difference can be explained by the damage mechanism; at 266 nm, two-photon absorption-induced defects lowered the LIDT same as a KrF-excimer-laser induced defects, whereas at longer wavelengths two photon process does not occur. LIDTs of fused quartz (FQ) at 532 and 355 nm, and that of a SFS containing about 1000 ppm of Cl and no OH at 355 nm were a little lower than that of the other SFSs. This may be related to the absorption of metallic impurities contained in FQ and dissolved Cl2 molecule in SFS.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 3244 164-, 1998-04-20
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1870302167987995648
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE