<scp>SMART</scp> pass will prevent inappropriate operation of S‐<scp>ICD</scp>

  • Motomi Tachibana
    Department of Cardiology Sakakibara Heart Institute of Okayama Okayama Japan
  • Nobuhiro Nishii
    Department of Cardiovascular Therapeutics Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
  • Kimikazu Banba
    Department of Cardiology Sakakibara Heart Institute of Okayama Okayama Japan
  • Shinpei Fujita
    Department of Cardiology Fukuyama City Hospital Fukuyama Japan
  • Etsuko Ikeda
    Department of Cardiology Tsuyama Central Hospital Okayama Japan
  • Keisuke Okawa
    Department of Cardiology Kagawa Prefecture Central Hospital Kagawa Japan
  • Hiroshi Morita
    Department of Cardiovascular Therapeutics Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
  • Hiroshi Ito
    Department of Cardiovascular Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan

この論文をさがす

説明

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Compared to screening <jats:styled-content style="fixed-case">ECG</jats:styled-content> before implantation of a subcutaneous implantable cardioverter‐defibrillator (S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content>), selectable vectors without T‐wave oversensing increase after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation. Newer algorithms have recently become available to reduce T‐wave oversensing, such as <jats:styled-content style="fixed-case">SMART</jats:styled-content> pass (<jats:styled-content style="fixed-case">SP</jats:styled-content>). With this function, more selectable vectors are identified after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation. However, this improvement in eligibility utilizing <jats:styled-content style="fixed-case">SP</jats:styled-content> has not yet been well validated. We aimed to clarify S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> eligibility before and after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation with and without <jats:styled-content style="fixed-case">SP</jats:styled-content>.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Participants comprised 34 patients implanted with an S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> at Okayama University Hospital and its affiliated hospitals between February 2016 and August 2017. A total of 102 S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> vectors were assessed for eligibility before and after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation, at rest and during exercise testing. Vector availability was evaluated in the presence and absence of <jats:styled-content style="fixed-case">SP</jats:styled-content> after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Subcutaneous implantable cardioverter‐defibrillator eligibility was significantly better after implantation even without <jats:styled-content style="fixed-case">SP</jats:styled-content> than S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> screening before S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation, both at rest (before 65.7% vs after 95.1%, <jats:italic>P </jats:italic>< 0.01) and during exercise (before 59.3% vs after 90.6%, <jats:italic>P </jats:italic>< 0.01). <jats:styled-content style="fixed-case">SP</jats:styled-content> improved S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> eligibility during exercise (<jats:styled-content style="fixed-case">SP</jats:styled-content> on 97.9% vs off 90.6%, <jats:italic>P </jats:italic>= 0.03). Multivariate analysis showed the prevalence of S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> eligibility increased significantly after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation compared to screening before implantation. <jats:styled-content style="fixed-case">SP</jats:styled-content> further increased selectable vectors in multivariate analysis.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Available vectors increased significantly after S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> implantation compared to preoperative vectors as assessed by S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content> screening <jats:styled-content style="fixed-case">ECG</jats:styled-content>. T‐wave oversensing during exercise has been an unresolved issue for S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content>, but <jats:styled-content style="fixed-case">SP</jats:styled-content> will help prevent inappropriate operation with S‐<jats:styled-content style="fixed-case">ICD</jats:styled-content>.</jats:p></jats:sec>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ