Bifunctional alanine dehydrogenase from the halotolerant cyanobacterium Aphanothece halophytica: characterization and molecular properties
Description
A link between carbon and nitrogen metabolism is important for serving as metabolic ancillary reactions. Here, we identified and characterized the alanine dehydrogenase gene in Aphanothece halophytica (ApalaDH) that is involved in alanine assimilation/dissimilation. Functional analysis revealed that ApalaDH encodes a bifunctional protein catalyzing the reversible reaction of pyruvate to L-alanine via its pyruvate reductive aminase (PvRA) activity, the reaction of L-alanine to pyruvate via its alanine oxidative dehydrogenase activity, and the non-reversible reaction of glyoxylate to glycine via its glyoxylate reductive aminase (GxRA) activity. Kinetic analysis showed the lowest affinity for pyruvate followed by L-alanine and glyoxylate with a K
Journal
-
- Archives of Microbiology
-
Archives of Microbiology 200 719-727, 2018-01-29
Springer Science and Business Media LLC