- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Optimal attribute-efficient learning of disjunction, parity, and threshold functions
Description
Decision trees are a very general computation model. Here the problem is to identify a Boolean function f out of a given set of Boolean functions F by asking for the value of f at adaptively chosen inputs. For classes F consisting of functions which may be obtained from one function g on n inputs by replacing arbitrary n−k inputs by given constants this problem is known as attribute-efficient learning with k essential attributes. Results on general classes of functions are known. More precise and often optimal results are presented for the cases where g is one of the functions disjunction, parity or threshold.