- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Rings characterised by semiprimitive modules
Search this article
Description
<jats:p>A module <jats:italic>M</jats:italic> is called a CS-module if every submodule of <jats:italic>M</jats:italic> is essential in a direct summand of <jats:italic>M</jats:italic>. It is shown that a ring <jats:italic>R</jats:italic> is semilocal if and only if every semiprimitive right <jats:italic>R</jats:italic>-module is CS. Furthermore, it is also shown that the following statements are equivalent for a ring <jats:italic>R</jats:italic>: (i) <jats:italic>R</jats:italic> is semiprimary and every right (or left) <jats:italic>R</jats:italic>-module is injective; (ii) every countably generated semiprimitive right <jats:italic>R</jats:italic>-module is a direct sum of a projective module and an injective module.</jats:p>
Journal
-
- Bulletin of the Australian Mathematical Society
-
Bulletin of the Australian Mathematical Society 52 107-116, 1995-08-01
Cambridge University Press (CUP)
- Tweet
Details 詳細情報について
-
- CRID
- 1870865117837765376
-
- ISSN
- 17551633
- 00049727
-
- Data Source
-
- OpenAIRE