- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
A 3D-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity
Description
<jats:p>Abstract. Variations in the atmospheric oxidative capacity, largely determined by variations in the hydroxyl radical (OH), form a key uncertainty in many greenhouse and other pollutant budgets, such as that of methane (CH4). Methyl chloroform (MCF) is an often-adopted tracer to indirectly put observational constraints on variations in OH. We investigated the budget of MCF in a 4DVAR inversion using the atmospheric transport model TM5, for the period 1998–2018, with the objective to derive information on interannual variations in OH and in its spatial distribution. We derived interannual variations in the global oxidation of MCF that bring simulated mole fractions of MCF within 1–2 % of the assimilated observations from the NOAA-GMD surface network at most sites. Additionally, the posterior simulations better reproduce aircraft observations used for independent validation. The derived OH variations showed robustness with respect to the prior MCF emissions and the prior OH distribution. The interannual variations were typically small ( </jats:p>