- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Human Aldolase A of a Hemolytic Anemia Patient with Asp-128→Substitution: Characteristics of an Enzyme Generated in E. coli Transfected with the Expression Plasmid pHAAD128G1
Search this article
Description
Aldolase A derived from a hemolytic anemia patient with aldolase A deficiency was shown to have an amino acid substitution of glycine for aspartic acid at the 128th position (Asp-128) in the enzyme [Kishi et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8623-8627]. We constructed an Escherichia coli expression plasmid, pHAAD128G, which carries the mutant aldolase A [aldolase A(D-G)] cDNA, and the enzyme generated in E. coli transfected with the expression plasmid was purified and characterized. Conversion of Asp to Gly at the 128th position in the enzyme rendered the enzyme thermolabile and susceptible to tryptic digestion. CD spectra analysis also revealed that the mutant enzyme had a remarkable conformation change with a decrease of regular form in the molecule. Addition of glycerol or some other polyalcohols during thermal treatment protected this altered enzyme (but not the normal enzyme) against denaturation and activity decrease. In order to determine the function of the amino acid residue at the 128th position, two artificial mutant enzymes with the substitutions of Glu for Asp [aldolase A(D-E)] and Ser for Asp [aldolase A(D-S)], respectively, at the position were constructed by site-directed mutagenesis and characterized. These analyses demonstrated the necessity for Asp to be present at the 128th residue in order for this enzyme to be thermally stable.
Journal
-
- The Journal of Biochemistry
-
The Journal of Biochemistry 108 153-157, 1990-08-01
Oxford University Press (OUP)