- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Object detection using independent local feature extractor
Search this article
Description
This paper presents an object detection method using independent local feature extractor. In general, it can be considered that objects are the combination of characteristic parts. Therefore, if local parts specialized for recognition target are obtained automatically from training samples, it is expected that good object detector is developed. For this purpose, we use Independent Component Analysis (ICA) which decomposes a signal into independent elementary signals. The basis vectors obtained by ICA are used as independent local feature extractors specified for detection target. The feature extractors are applied to candidate region, and their outputs are used in classification. However, the extracted features are independent local features. Therefore the relative information between neighboring positions of independent features may be more effective for object detection than simple independent features. To extract the relative information, higher order local autocorrelation features are used. To classify detection target and non-target, we use Support Vector Machine which is known as binary classifier. The proposed method is applied to car detection problem. Superior results are obtained by comparison with Principal Component Analysis.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 6051 605106-, 2005-12-05
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1871146593011519360
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE