Chaos from orbit-flip homoclinic orbits generated in real systems

説明

A new class of chaotic systems is discovered that are generated in a practical, nonlinear, mutually coupled phase-locked loop (PLL) circuit. Presented theoretical results make it possible to understand experimental results of mutually coupled PLL's on the onset of chaos using the geometry of the invariant manifolds, while the resultant simple geometry and complex dynamics is expected to have applications in other areas, e.g., power systems or interacting bar magnets. Motivated by the numerical study of this system, the topological horseshoe is proven to be generated in the codimension 3 unfolding of a degenerated orbit-flip homoclinic point for this system. Qualitatively different type of bifurcation phenomena are also observed to appear depending on the phase detector (PD) characteristics.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ