- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Simulations of optical switching effects of a guided-mode resonant grating filter with a Kerr medium
Search this article
Description
We propose an optical switch of a guided-mode resonant grating (GMRG) filter with a Kerr medium and simulate optical switching effects by using the nonlinear finite differential time domain (FDTD) method. It is shown that the nonlinear FDTD method is needed for simulating the optical switch effect by analyzing the bistable feature. The doubly periodic structure was used in order to produce the optical Kerr effect efficiently. Because a doubly periodic GMRG filter operates for small beam diameter and grating area, the electric field can be accumulated to the small area. The doubly periodic grating consisted of materials with refractive indices of 1.88 and 1.0, and the material of index 1.88 had a third-order susceptibility of 8.5×10 -10 esu. The TE polarized plane waves were normally incident on the grating structure as “pump light” and “probe light.” When the intensity of “pump light” increases, the refractive index changes due to the optical Kerr effect, so that the resonant condition of the GMRG filter for the “probe light” also changes. Therefore the transmittance of “probe light” can be controlled by the “pump light.” By changing “pump light” from 0 to 100kW/mm 2 , the transmittance of “probe light” was controllable from 0 to 0.6.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 5184 74-, 2003-12-29
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1871428067679568000
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE