Jasmonic Acid-Induced β-Cyclocitral Confers Resistance to Bacterial Blight and Negatively Affects Abscisic Acid Biosynthesis in Rice
Description
<jats:p>Jasmonic acid (JA) regulates the production of several plant volatiles that are involved in plant defense mechanisms. In this study, we report that the JA-responsive volatile apocarotenoid, β-cyclocitral (β-cyc), negatively affects abscisic acid (ABA) biosynthesis and induces a defense response against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice (Oryza sativa L.). JA-induced accumulation of β-cyc was regulated by OsJAZ8, a repressor of JA signaling in rice. Treatment with β-cyc induced resistance against Xoo and upregulated the expression of defense-related genes in rice. Conversely, the expression of ABA-responsive genes, including ABA-biosynthesis genes, was downregulated by JA and β-cyc treatment, resulting in a decrease in ABA levels in rice. β-cyc did not inhibit the ABA-dependent interactions between OsPYL/RCAR5 and OsPP2C49 in yeast cells. Furthermore, we revealed that JA-responsive rice carotenoid cleavage dioxygenase 4b (OsCCD4b) was localized in the chloroplast and produced β-cyc both in vitro and in planta. These results suggest that β-cyc plays an important role in the JA-mediated resistance against Xoo in rice.</jats:p>
Journal
-
- International Journal of Molecular Sciences
-
International Journal of Molecular Sciences 24 1704-, 2023-01-15
MDPI AG