- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Towards Landscape-Aware Automatic Algorithm Configuration: Preliminary Experiments on Neutral and Rugged Landscapes
Description
The proper setting of algorithm parameters is a well-known issue that gave rise to recent research investigations from the (offline) automatic algorithm configuration perspective. Besides, the characteristics of the target optimization problem is also a key aspect to elicit the behavior of a dedicated algorithm, and as often considered from a landscape analysis perspective. In this paper, we show that fitness landscape analysis can open a whole set of new research opportunities for increasing the effectiveness of existing automatic algorithm configuration methods. Specifically, we show that using landscape features in iterated racing both (i) at the training phase, to compute multiple elite configurations explicitly mapped with different feature values, and (ii) at the production phase, to decide which configuration to use on a feature basis, provides significantly better results compared against the standard landscape-oblivious approach. Our first experimental investigations on NK-landscapes, considered as a benchmark family having controllable features in terms of ruggedness and neutrality, and tackled using a memetic algorithm with tunable population size and variation operators, show that a landscape-aware approach is a viable alternative to handle the heterogeneity of (black-box) combinatorial optimization problems.
International audience
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1871428068102711552
-
- HANDLE
- 20.500.12210/23218
-
- Data Source
-
- OpenAIRE