(Almost) Unsupervised Grammatical Error Correction using Synthetic Comparable Corpus

DOI オープンアクセス

説明

We introduce unsupervised techniques based on phrase-based statistical machine translation for grammatical error correction (GEC) trained on a pseudo learner corpus created by Google Translation. We verified our GEC system through experiments on a low resource track of the shared task at BEA2019. As a result, we achieved an F0.5 score of 28.31 points with the test data.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ