Incompleteness and limit of security theory of quantum key distribution

この論文をさがす

説明

It is claimed in the many papers that a trace distance: d guarantees the universal composition security in quantum key distribution (QKD) like BB84 protocol. In this introduction paper, at first, it is explicitly explained what is the main misconception in the claim of the unconditional security for QKD theory. In general terms, the cause of the misunderstanding on the security claim is the Lemma in the paper of Renner. It suggests that the generation of the perfect random key is assured by the probability (1- d ), and its failure probability is d . Thus, it concludes that the generated key provides the perfect random key sequence when the protocol is success. So the QKD provides perfect secrecy to the one time pad. This is the reason for the composition claim. However, the quantity of the trace distance (or variational distance) is not the probability for such an event. If d is not small enough, always the generated key sequence is not uniform. Now one needs the reconstruction of the evaluation of the trace distance if one wants to use it. One should first go back to the indistinguishability theory in the computational complexity based, and to clarify the meaning of the value of the variational distance. In addition, the same analysis for the information theoretic case is necessary. The recent serial papers by H.P.Yuen have given the answer on such questions. In this paper, we show more concise description of Yuen's theory, and clarify that the upper bound theories for the trace distance by Tomamichel et al and Hayashi et al are constructed by the wrong reasoning of Renner and it is unsuitable as the security analysis. Finally, we introduce a new macroscopic quantum communication to replace Q-bit QKD.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1871709542788026240
  • DOI
    10.1117/12.929185
  • ISSN
    0277786X
  • データソース種別
    • OpenAIRE

問題の指摘

ページトップへ