FEM Analysis on Pressure Vessel Components Containing LTAs Against Seismic Load Using Combined Non-Linear Isotropic/Kinematic Hardening Model
説明
<jats:p>Fitness-for-service (FFS) assessments are quantitative engineering evaluations that perform to demonstrate the integrity of an in-service component that may contain a flaw or damage [1]. It can be used to make run-repair-replace decisions to help determine if pressured equipment containing flaw that have been identified by inspection can continue to operate safety for some period of time.</jats:p> <jats:p>This paper provides a FFS assessment on carbon steel pipe which contained a LTA (Local Thin Area) against seismic load by FEM (Finite Element Method) analysis. ABAQUS Ver. 6.10, which has the combined isotropic / kinematic hardening model [2], is used to simulate the LTA contained carbon steel pipe against seismic load. Material parameters in the hardening model are identified by a symmetric strain cycle experiment based on ASTM E606. Isotropic hardening component is introduced by specifying the equivalent stress defining the size of the yield surface, as a tabular function of the equivalent plastic strain. Kinematic hardening component is obtained from the stabilized cycle of a specimen that is subjected to symmetric stain cycles.</jats:p> <jats:p>The authors introduced the way how to calibrate the material parameters of combined isotropic / kinematic hardening model. Then the authors calculated up to 100 cycles on carbon steel pipe which contained a Local Thin Area against seismic load at 300 degrees centigrade. The results comparison between FEM analysis and experiment shows that stress-strain hysteresis loop tendency and number of cycles to failure are predicted accurately.</jats:p>
収録刊行物
-
- Volume 7: Operations, Applications and Components
-
Volume 7: Operations, Applications and Components 2013-07-14
American Society of Mechanical Engineers