- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm
Search this article
Description
In this study, we propose a method for discriminating crops/weeds in upland rice fields using a commercial unmanned aerial vehicles (UAVs) and red-green-blue (RGB) cameras with the simple linear iterative clustering (SLIC) algorithm and random forest (RF) classifier. In the SLIC-RF algorithm, we evaluated different combinations of input features: three color spaces (RGB, hue-saturation-brightness [HSV], CIE-L*a*b), canopy height model (CHM), spatial texture (Texture) and four vegetation indices (VIs) (excess green [ExG], excess red [ExR], green-red vegetation index [GRVI] and color index of vegetation extraction [CIVE]). Among the color spaces, the HSV-based SLIC-RF model showed the best performance with the highest out-of-bag (OOB) accuracy (0.904). The classification accuracy was improved by the combination of HSV with CHM, Texture, ExG, or CIVE. The highest OOB accuracy (0.915) was obtained from the HSV+Texture combination. The greatest errors from the confusion matrix occurred in the classification between crops and weeds, while soil could be classified with a very high accuracy. These results suggest that with the SLIC-RF algorithm developed in this study, rice and weeds can be discriminated by consumer-grade UAV images with acceptable accuracy to meet the needs of site-specific weed management (SSWM) even in the early growth stages of small rice plants..
Journal
-
- Plant Production Science
-
Plant Production Science 24 198-215, 2020-10-13
Informa UK Limited
- Tweet
Details 詳細情報について
-
- CRID
- 1871709542883803136
-
- ISSN
- 13491008
- 1343943X
-
- Data Source
-
- OpenAIRE