Grand unified parity solution to the strong <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:math> problem
この論文をさがす
説明
A beyond the standard model theory that respects parity symmetry at short distances is known to provide a solution to the strong CP problem without the need for an axion, while keeping the CKM phase unconstrained. In this paper we present a supersymmetric SO(10) grand unified embedding of this idea with Yukawa couplings generated by {\bf 10}, ${\bf \overline{126}}$ and {\bf 120} Higgs fields. This model is known to provide a unified description of masses and mixings of quarks and leptons. When CP symmetry is imposed on this model, the discrete gauge subgroup C of SO(10) combines with it to generate an effective parity symmetry, leading to hermitian quark mass matrices. Imposing an additional discrete symmetry, $G$, we show that there are no other tree level sources of $\theta$ in the model; $G$ also guarantees that the one- and two-loop contributions to $\theta$ vanish. We then show that the leading three-loop effects and the effect of higher-dimensional operators invariant under $G$ give rise to $\theta$ near the current experimental bound, making the model testable in the current searches for neutron electric dipole moment.
収録刊行物
-
- Physical Review D
-
Physical Review D 99 2019-06-19
American Physical Society (APS)