Momentum distribution of multiply charged ions produced by intense<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>(</mml:mo><mml:mn>50</mml:mn><mml:mo>–</mml:mo><mml:mn>70</mml:mn><mml:mtext>‐</mml:mtext><mml:mi>PW</mml:mi><mml:mo>∕</mml:mo><mml:msup><mml:mi>cm</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math>lasers

DOI オープンアクセス

この論文をさがす

説明

We investigate both theoretically and experimentally the momentum distribution of multiply charged ions ionized by an intense multicycle laser field with a maximum intensity of $\ensuremath{\sim}(50--70)\phantom{\rule{0.3em}{0ex}}\mathrm{PW}∕{\mathrm{cm}}^{2}$. Ions with different charge states are produced during a single laser shot due to a spatial variation of the laser intensity within the beam focus. The measurements show approximately a simple linear relation between the width of the momentum distributions and the ionization potential of the ions. Such a power law scaling appears to be universal for various rare gas atoms used (He, Ne, Ar). We analyze this ionization dynamics using a quasiclassical tunneling theory for a single active electron model assuming that the interaction between electrons is negligible in such a strong field limit. We show that for the relatively long pulses used in the present work ($\ensuremath{\sim}200\phantom{\rule{0.3em}{0ex}}\mathrm{fs}$ or $\ensuremath{\sim}80\phantom{\rule{0.3em}{0ex}}\text{cycles}$) the effect of the laser envelope plays an important role in the ionization process.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ