- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Search this article
Description
In this paper, we investigate an application that integrates holistic appearance based method and feature based method for face recognition. The automatic face recognition system makes use of multiscale Kernel PCA (Principal Component Analysis) characterized approximated face images and reduced the number of invariant SIFT (Scale Invariant Feature Transform) keypoints extracted from face projected feature space. To achieve higher variance in the inter-class face images, we compute principal components in higher-dimensional feature space to project a face image onto some approximated kernel eigenfaces. As long as feature spaces retain their distinctive characteristics, reduced number of SIFT points are detected for a number of principal components and keypoints are then fused using user-dependent weighting scheme and form a feature vector. The proposed method is tested on ORL face database, and the efficacy of the system is proved by the test results computed using the proposed algorithm.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 9652 96520O-, 2015-10-21
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1871991017582165760
-
- HANDLE
- 11388/176841
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE