Visualizing Reaction Fronts and Transport Limitations in Solid‐State Li–S Batteries via Operando Neutron Imaging

DOI DOI DOI DOI DOI ほか4件をすべて表示 一部だけ表示 被引用文献3件 オープンアクセス
  • Robert Bradbury
    Institute for Materials Science and Technologies Technische Universität Berlin Straße des 17, Juni 135 10623 Berlin Germany
  • Georg F. Dewald
    Institute of Physical Chemistry Justus‐Liebig‐University Gießen Heinrich‐Buff‐Ring 17 D‐35392 Gießen Germany
  • Marvin A. Kraft
    Institute of Inorganic and Analytical Chemistry University of Münster Correnstrasse 30 48149 Muenster Germany
  • Tobias Arlt
    Institute for Materials Science and Technologies Technische Universität Berlin Straße des 17, Juni 135 10623 Berlin Germany
  • Nikolay Kardjilov
    Helmholtz‐Zentrum Berlin für Materialien und Energie (HZB) Hahn Meitner Platz 1 D‐14109 Berlin Germany
  • Jürgen Janek
    Institute of Physical Chemistry Justus‐Liebig‐University Gießen Heinrich‐Buff‐Ring 17 D‐35392 Gießen Germany
  • Ingo Manke
    Helmholtz‐Zentrum Berlin für Materialien und Energie (HZB) Hahn Meitner Platz 1 D‐14109 Berlin Germany
  • Wolfgang G. Zeier
    Institute of Inorganic and Analytical Chemistry University of Münster Correnstrasse 30 48149 Muenster Germany
  • Saneyuki Ohno
    Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan

この論文をさがす

説明

<jats:title>Abstract</jats:title><jats:p>The exploitation of high‐capacity conversion‐type materials such as sulfur in solid‐state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate‐capability, bottlenecking further development of solid‐state lithium–sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate‐limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state‐of‐charge‐dependent tomography, highlights a hitherto‐overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid‐state batteries, irrespective of the type of active material.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

問題の指摘

ページトップへ