- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Temperature study of Rydberg exciton optical properties in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">O</mml:mi></mml:mrow></mml:math>
Search this article
Description
Rydberg excitons in Cu2O can be an emergent platform for solid-state quantum information processing by utilizing the exaggerated properties of high-lying excited states within the material. To develop practical quantum systems, high-temperature operation is desirable. Here, we study the temperature-dependence of the yellow and green Rydberg exciton resonances in a thin Cu2O crystal via broad-band phonon-assisted absorption spectra between 4 K and 100 K. At 4 K, we can identify the principal quantum number n = 11 yellow and n = 4 green Rydberg exciton states, beyond which we are limited by the spectral resolution of standard absorption techniques. Above liquid nitrogen boiling temperature (~80 K), the n = 6 yellow and n = 4 green Rydberg exciton states are readily captured and higher-temperature yellow Rydberg exciton optical properties still exhibit the standard scaling laws seen at low temperatures. This promising result lays the groundwork for a new route to build a high-temperature Rydberg quantum information processing architecture with solid-state Cu2O.
16 pages, 9 figures
Journal
-
- Physical Review B
-
Physical Review B 103 2021-05-06
American Physical Society (APS)
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1871991017878567680
-
- ISSN
- 24699969
- 24699950
-
- Data Source
-
- OpenAIRE