A Micromechanics Approach to Assess Ductile Crack Initiation in Damaged Pipelines
説明
<jats:p>This study explores the capabilities of a computational cell framework into a 3-D setting to model ductile fracture behavior in tensile specimens and damaged pipelines. The cell methodology provides a convenient approach for ductile crack extension suitable for large scale numerical analyses which includes a damage criterion and a microstructural length scale over which damage occurs. Laboratory testing of a high strength structural steel provides the experimental stress-strain data for round bar and circumferentially notched tensile specimens to calibrate the cell model parameters for the material. The present work applies the cell methodology using two damage criterion to describe ductile fracture in tensile specimens: (1) the Gurson-Tvergaard (GT) constitutive model for the softening of material and (2) the stress-modified, critical strain (SMCS) criterion for void coalescence. These damage criteria are then applied to predict ductile cracking for a pipe specimen tested under cycling bend loading. While the methodology still appears to have limited applicability to predict ductile cracking behavior in pipe specimens, the cell model predictions of the ductile response for the tensile specimens show good agreemeent with experimental measurements.</jats:p>
収録刊行物
-
- Fatigue, Fracture, and Damage Analysis
-
Fatigue, Fracture, and Damage Analysis 79-88, 2003-01-01
ASMEDC