- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Synthesis, growth, structure and characterization of 1-Ethyl-2-(2-p-tolyl-vinyl)-pyridinium iodide (TASI) – An efficient material for third-order nonlinear optical applications
Search this article
Description
Abstract A new organic stilbazolium derivative, 1-Ethyl-2-(2-p-tolyl-vinyl)-pyridinium iodide (TASI), was grown from methanol:acetonitrile (1:3) mixed solvent by slow evaporation technique. Single crystal X-ray diffraction analysis revealed that TASI crystallizes in triclinic system with a centrosymmetric space group P-1. The molecular structure and the presence of expected functional groups of TASI were confirmed by 1H NMR and FT-IR spectroscopic studies. The HOMO and LUMO energies influence the charge transfer takes place within the molecule. The grown crystal was thermally stable up to 210 °C as determined by TG/DTA analysis. UV-Vis-NIR spectral study showed that the grown crystal was transparent in the wavelength range of 438–1100 nm. Mechanical behaviour and surface laser damage threshold were studied to find the suitability of the grown crystal for device fabrication. Studies of its third-order nonlinear optical properties using a Z-scan technique demonstrates that TASI crystal is capable of exhibiting reverse saturable absorption and self-focusing performance with the second-order molecular hyperpolarizability (γ) 4.983 × 10−34 esu. The third-order nonlinear susceptibility of TASI was found to be 8.931 × 10−6 esu, which is higher than a few other stilbazolium derivative crystals.
Journal
-
- Materials Chemistry and Physics
-
Materials Chemistry and Physics 188 131-142, 2017-02-01
Elsevier BV
Related Data
See more- Tweet
Details 詳細情報について
-
- CRID
- 1871991018135763968
-
- ISSN
- 02540584
-
- Data Source
-
- OpenAIRE