- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
GSK3 activity is a cell fate switch that balances the ratio of vascular cell type
Description
<jats:title>Abstract</jats:title><jats:p>The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as “highways” for transport, and companion cells (CCs), which serve as “gates” to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. In this study, we develop a novel culture system for CC differentiation named VISUAL-CC, which reconstitutes the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, <jats:italic>gsk3</jats:italic> hextuple mutants possess much more SEs and less CCs in planta. Conversely, <jats:italic>gsk3</jats:italic> gain-of-function mutants induced by phloem-specific promoter partially increased the CC ratio. Taken together, GSK3 activity appears to function as a cell fate switch in the phloem, thereby balancing the SE/CC ratio.</jats:p>