- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Description
Exploiting graph-structured data has many real applications in domains including natural language semantics, programming language processing, and malware analysis. A variety of methods has been developed to deal with such data. However, learning graphs of large-scale, varying shapes and sizes is a big challenge for any method. In this paper, we propose a multi-view multi-layer convolutional neural network on labeled directed graphs (DGCNN), in which convolutional filters are designed flexibly to adapt to dynamic structures of local regions inside graphs. The advantages of DGCNN are that we do not need to align vertices between graphs, and that DGCNN can process large-scale dynamic graphs with hundred thousands of nodes. To verify the effectiveness of DGCNN, we conducted experiments on two tasks: malware analysis and software defect prediction. The results show that DGCNN outperforms the baselines, including several deep neural networks.
Journal
-
- Neural Networks
-
Neural Networks 108 533-543, 2018-12-01
Elsevier BV