- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Mitochondrial DNA reduced by hypoxic conditions in three-dimensional (3D) spheroid cell cultures
Search this article
Description
Three-dimensional (3D) cell culture reflects many of the important properties of solid tumors, such as the inadequate diffusion of oxygen that results in hypoxia. To understand the mitochondrial states in cancer, we performed comparisons of the levels of mitochondrial DNA (mtDNA), fusion- and fission-related mitochondrial messenger RNA (mRNA), and mitochondrial protein expression between monolayer (2D)- and 3D-cultured cancer cells. The mtDNA levels were observed to be significantly lower in the 3D cells compared with the monolayer cells. In contrast, the differences in expression of the mitochondrial fusion- and fission-related mRNAs and mitochondrial proteins between 2D- and 3D-cultured cancer cells were not significant, as shown by real-time PCR and immunoblot analysis. Therefore, although mtDNA levels decrease as a whole during 3D culture, this does not appear to affect the fusion and fission of individual mitochondria. Indeed, the factors regulating mitochondrial dynamics during 3D cell culture remain unclear. This study provides the basis for future, more detailed studies on the regulation of mtDNA.
Journal
-
- Tumor Biology
-
Tumor Biology 35 12689-12693, 2014-09-13
Springer Science and Business Media LLC