Effects of Phosphoinositide 3-Kinase on the Endothelin-1–Induced Activation of Voltage-Independent Ca<sup>2+</sup>Channels and Mitogenesis in Chinese Hamster Ovary Cells Stably Expressing Endothelin<sub>A</sub>Receptor

Search this article

Description

We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC) in Chinese hamster ovary cells expressing endothelin(A) receptor (CHO-ET(A)R). In addition, these channels can be discriminated using Ca(2+) channel blockers (R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamid mesylate (LOE 908) and 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole (SKF 96365). LOE 908 is a blocker of NSCC-1 and NSCC-2, whereas SKF 96365 is a blocker of SOCC and NSCC-2. In this study, we investigated the effects of phosphoinositide 3-kinase (PI3K) on the ET-1-induced activation of these channels and mitogenesis in CHO-ET(A)R using wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), inhibitors of phosphoinositide 3-kinase (PI3K). ET-1-induced Ca(2+) influx was partially inhibited in CHO-ET(A)R pretreated with wortmannin or LY 294002. In contrast, addition of wortmannin or LY 294002 after stimulation with ET-1 did not suppress Ca(2+) influx. The Ca(2+) channels activated by ET-1 in wortmannin or LY 294002-treated CHO-ET(A)R were sensitive to LOE 908 and resistant to SKF 96365. Wortmannin also partially inhibited ET-1-induced mitogenesis. LOE 908, but not SKF 96365, abolished the wortmannin-resistant part of mitogenesis. The IC(50) values (~30 nM) of wortmannin for the ET-1-induced Ca(2+) influx and mitogenesis were similar to those for the ET-1-induced PI3K activation. In conclusion, NSCC-2 and SOCC are stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated via PI3K-independent cascade. Moreover, PI3K seems to be required for the activation of the Ca(2+) entry, but not for its maintenance. In addition, PI3K is involved in the ET-1-induced mitogenesis that depends on the extracellular Ca(2+) influx through SOCC and NSCC-2.

Journal

Details 詳細情報について

Report a problem

Back to top