- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Fuzzy Classification of Gene Expression Data
Search this article
Description
Microarray expression studies measure, through a hybridisation process, the levels of genes expressed in biological samples. Knowledge gained from these studies is deemed increasingly important due to its potential of contributing to the understanding of fundamental questions in biology and clinical medicine. One important aspect of microarray expression analysis is the classification of the recorded samples which poses many challenges due to the vast number of recorded expression levels compared to the relatively small numbers of analysed samples. In this paper we show how fuzzy rule-based classification can be applied successfully to analyse gene expression data. The generated classifier consists of an ensemble of fuzzy if-then rules which together provide a reliable and accurate classification of the underlying data. Experimental results on several standard microarray datasets confirm the efficacy of the approach.
Journal
-
- 2007 IEEE International Fuzzy Systems Conference
-
2007 IEEE International Fuzzy Systems Conference 1-6, 2007-06-01
IEEE
- Tweet
Details 詳細情報について
-
- CRID
- 1872553967939649024
-
- ISSN
- 10987584
-
- Data Source
-
- OpenAIRE