- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Dimensionality Reduction for Semi-supervised Face Recognition
Description
A dimensionality reduction technique is presented for semi-supervised face recognition where image data are mapped into a low dimensional space with a spectral method. A mapping of learning data is generalized to a new datum which is classified in the low dimensional space with the nearest neighbor rule. The same generalization is also devised for regularized regression methods which work in the original space without dimensionality reduction. It is shown with experiments that the spectral mapping method outperforms the regularized regression. A modification scheme for data similarity matrices on the basis of label information and a simple selection rule for data to be labeled are also devised.