- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
A Neural Network for Simultaneously Reconstructing Transparent and Opaque Surfaces
Description
This paper presents a neural network (NN) to recover three-dimensional (3D) shape of an object from its multiple view images. The object may contain non-overlapping transparent and opaque surfaces. The challenge is to simultaneously reconstruct the transparent and opaque surfaces given only a limited number of views. By minimizing the pixel error between the output images of this NN and teacher images, we want to refine vertices position of an initial 3D polyhedron model to approximate the true shape of the object. For that purpose, we incorporate a ray tracing formulation into our NN’s mapping and learning. At the implementation stage, we develop a practical regularization learning method using texture mapping instead of ray tracing. By choosing an appropriate regularization parameter and optimizing using hierarchical learning and annealing strategies, our NN gives more approximate shape.