- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Counteracting Regulation of Chromatin Remodeling at a Fission Yeast cAMP Responsive Element-Related Recombination Hotspot by Stress-Activated Protein Kinase, cAMP-Dependent Kinase and Meiosis Regulators
Description
<jats:title>Abstract</jats:title> <jats:p>In fission yeast, an ATF/CREB-family transcription factor Atf1-Pcr1 plays important roles in the activation of early meiotic processes via the stress-activated protein kinase (SAPK) and the cAMP-dependent protein kinase (PKA) pathways. In addition, Atf1-Pcr1 binds to a cAMP responsive element (CRE)-like sequence at the site of the ade6-M26 mutation, which results in local enhancement of meiotic recombination and chromatin remodeling. Here we studied the roles of meiosis-inducing signal transduction pathways in M26 chromatin remodeling. Chromatin analysis revealed that persistent activation of PKA in meiosis inhibited M26 chromatin remodeling, suggesting that the PKA pathway represses M26 chromatin remodeling. The SAPK pathway activated M26 chromatin remodeling, since mutants lacking a component of this pathway, the Wis1 or Spc1/Sty1 kinases, had no M26 chromatin remodeling. M26 chromatin remodeling also required the meiosis regulators Mei2 and Mei3 but not the subsequently acting regulators Sme2 and Mei4, suggesting that induction of M26 chromatin remodeling needs meiosis-inducing signals before premeiotic DNA replication. Similar meiotic chromatin remodeling occurred meiotically around natural M26 heptamer sequences. These results demonstrate the coordinated action of genetic and physiological factors required to remodel chromatin in preparation for high levels of meiotic recombination and eukaryotic cellular differentiation.</jats:p>
Journal
-
- Genetics
-
Genetics 159 1467-1478, 2001-12-01
Oxford University Press (OUP)
- Tweet
Keywords
- Recombination, Genetic
- Dose-Response Relationship, Drug
- Models, Genetic
- Genes, Fungal
- Cell Differentiation
- DNA
- Cyclic AMP-Dependent Protein Kinases
- Chromatin
- Pheromones
- Meiosis
- Mutation
- Schizosaccharomyces
- Cyclic AMP
- Mitogen-Activated Protein Kinase 8
- Mitogen-Activated Protein Kinases
- Cyclic AMP Response Element-Binding Protein
- Signal Transduction