- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Reducing Hubness for Kernel Regression
DOI
Open Access
Description
In this paper, we point out that hubness--some samples in a high-dimensional dataset emerge as hubs that are similar to many other samples--influences the performance of kernel regression. Because the dimension of feature spaces induced by kernels is usually very high, hubness occurs, giving rise to the problem of multicollinearity, which is known as a cause of instability of regression results. We propose hubness-reduced kernels for kernel regression as an extension of a previous approach for kNN classification that reduces spatial centrality to eliminate hubness.