- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Multilayer Structures and Emissive Regions in Organic Thin-Film Electroluminescent Diodes
Search this article
Description
<jats:title>ABSTRACT</jats:title><jats:p>The relationships between emission quantum efficiency and emissive regions in organic thin-film electroluminescent (EL) devices were studied. As an emissive layer (EML) and an electron transport layer (ETL) material, 9, 10-bis(4-diphenylaminostyryl)anthracene and 1,3- bis(4-tert-butylphenyl-1,3,4-oxadiazolyl)phenylene, respectively, were used. A zone doped with 2,4-bis(4-diethylamino-2-hydroxyphenyl)-1,3-dihydroxycycrobutenediylium dihydroxide was formed in an EML. The relationships between the emission intensities from the dopant and the positions of doped zones gave information on the emissive regions in each EL device. The emissive region in the single-layer (SL) device consisting only of an EML extended over the EML. That in the two-layer device (DL-E) in which an EML was combined with an ETL was located within 10 nm-wide region near the EML/ETL boundary. Moreover, the emission efficiency of the DL-E device was found to be about 20 times as high as that of the SL device. Therefore, it was found that the carrier recombination within the narrow region sufficiently apart from electrodes gave high emission efficiency.</jats:p>
Journal
-
- MRS Proceedings
-
MRS Proceedings 413 1995-01-01
Springer Science and Business Media LLC
- Tweet
Details 詳細情報について
-
- CRID
- 1873398392408294656
-
- ISSN
- 19464274
- 02729172
-
- Data Source
-
- OpenAIRE