- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Novel applications of DNA materials
Search this article
Description
This paper describes preparations of innovative photonic devices based on high purity DNA molecules which are obtained from Salmon roe. DNA molecules have characteristic features of double helical chain structures where aromatic compounds can intercalate into the stacked layers so that various optically active aromatic dyes indicate strong enhancement effects of photonic activities. Thus, various DNA photonic devices have been developed in the world in terms of optical switches, electro-luminescence (EL), lasers and so on. However, these DNA photonic devices adsorb moisture in the air because of hydrophilic character of DNA molecules, leading to decrease photonic activities. Nevertheless, it was found by my group that a novel hybridization method of the dye-intercalated DNA molecules by means of so-called so-gel process increased stabilities and durability of DNA photonic devices under environmental changes. Also, hybridization of dye-intercalated DNA devices with synthetic polymers including fluorinated poly(methylmethacrylate ) or polycarbonates was successfully carried out by solution blending method, followed by casting the solution to obtain these films which showed stability and durability increases of these DNA photonic devices. DNA-lipid complexes showed a very strong fluorescence amplification by chelating with rare earth metals such as Europium or Telbiumu compounds. This paper also describes the chelate effects of rare earth metal compounds for light amplifications.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 7403 740305-, 2009-08-20
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1873398392613013376
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE