A generic approach to the design of decentralized linear output- feedback controllers

この論文をさがす

説明

A sufficient condition for failure-tolerant performance stabilization in a desirable performance region under decentralized linear output feedback is established. To exploit the flexibility in decentralized control beyond multivariable pole assignment, and to address the subsystem design objectives along with those of the overall system, a generic problem on decentralized linear output feedback is then defined. The problem is reformulated in terms of a constrained nonlinear optimization problem. The proposed methodology results in the optimal reconciliation of failure-tolerant robust performance of the overall system, and (maximal) robustness, disturbance rejection, noninteractive performance, reliability and low actuator gains in the isolated subsystems in the face of unstructured perturbations in the controller and plant parameters. The effectiveness of the proposed approach is demonstrated by an example.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ