Stability Of Stochastic Model Predictive Control For Schrödinger Equation With Finite Approximation
説明
{"references": ["A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,\nM. Strehle and G. Gerber, Control of Chemical Reactions by\nFeedback-Optimized Phase-Shaped Femtosecond Laser Pulses, Science,\nVol. 282, 1998, pp.919-922.", "T. Brixner, N.H. Damrauer, P. Niklaus and G. Gerber, Photoselective\nAdaptive Femtosecond Quantum Control in the Liquid Phase, Nature,\nVol. 414, 2001, pp.57-60.", "T. Weinacht, J. Ahn and P. Bucksbaum, Controlling the Shape of a\nQuantum Wavefunction, Nature, Vol. 397, 1999, pp.233-235.", "H. Rabitz, R. de Vivie-Riedle, M. Motzkus and K. Kompa, Whither the\nFuture of Controlling Quantum Phenomena?, Science, Vol. 288, 2000,\npp.824-828.", "L. I. Schiff, Quantum Mechanics, Mcgraw-Hill College, 3rd Edition,\n1968.", "D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 2nd\nEdition, 2005.", "M. Mirrahimi, P. Rouchon and G. Turinici, Lyapunov control of bilinear\nSchr\u00a8odinger equations, Automatica, Vol. 41, 2005, pp.1987-1994.", "K. Beauchard, J.-M. Coron, M. Mirrahimi and P. Rouchon, Implicit\nLyapunov Control of Finite Dimensional Schr\u00a8odinger Equations,\nSystems & Control Letters, Vol. 56, 2007, pp.388-395.", "M. Mirrahimi and R. Van Handel, Stabilizing Feedback Controls for\nQuantum Systems, SIAM Journal on Control and Optimization, Vol. 46,\n2007, pp.445-467.\n[10] X. Wang and S. G. Schirmer, Analysis of Effectiveness of Lyapunov\nControl for Non-Generic Quantum States, IEEE Transactions on\nAutomatic Control, Vol. 55, 2010, pp.1406-1411.\n[11] B.-Z. Guo and K.-Y. Yang, Output Feedback Stabilization of a\nOne-Dimensional Schr\u00a8odinger Equation by Boundary Observation With\nTime Delay, IEEE Transactions on Automatic Control, Vol. 55, 2010,\npp.1226-1232.\n[12] M. Krstic, B.-Z. Guo and A. Smyshlyaev, Boundary Controllers and\nObservers for the Linearized Schr\u00a8odinger Equation, SIAM Journal on\nControl and Optimization, Vol. 49, 2011, pp.1479-1497. [13] D. Alessandro and M. Dahleh, Optimal Control of Two-Level Quantum\nSystems, IEEE Transactions on Automatic Control, Vol. 46, 2001,\npp.866-876.\n[14] L. Baudouina and J. Salomonb, Constructive Solution of a Bilinear\nOptimal Control Problem for a Schr\u00a8odinger Equation, Systems & Control\nLetters, Vol. 57, 2008, pp.453-464.\n[15] S. Grivopoulos and B. Bamieh, Optimal Population Transfers in a\nQuantum System for Large Transfer Time, IEEE Transactions on\nAutomatic Control, Vol. 53, 2008, pp.980-992.\n[16] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with\nNumerical Solution for Thermal Fluid Systems, Proceedings of SICE\nAnnual Conference, pp. 1298-1303, 2012.\n[17] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with\nNumerical Solution for Spatiotemporal Dynamic Systems, Proceedings\nof IEEE Conference on Decision and Control, pp. 2920-2925, 2012.\n[18] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control\nfor Hot Strip Mill Cooling Systems, IEEE/ASME Transactions on\nMechatronics, Vol. 18, No. 3, pp. 998-1005, 2013.\n[19] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control\nWith Numerical Solution for Nonlinear Parabolic Partial Differential\nEquations, IEEE Transactions on Automatic Control, Vol. 58, No. 3,\npp. 725-730, 2013.\n[20] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Receding Horizon Control\nfor High-Dimensional Burgersf Equations with Boundary Control\nInputs, Transactions of the Japan Society for Aeronautical and Space\nSciences, Vol. 56, No.3, pp. 137-144, 2013.\n[21] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Output Feedback Receding\nHorizon Control for Spatiotemporal Dynamic Systems, Proceedings of\nAsian Control Conference, 2013.\n[22] R. Satoh, T. Hashimoto and T. Ohtsuka, Receding Horizon Control for\nMass Transport Phenomena in Thermal Fluid Systems, Proceedings of\nAustralian Control Conference, pp. 273-278, 2014.\n[23] T. Hashimoto, Receding Horizon Control for a Class of Discrete-time\nNonlinear Implicit Systems, Proceedings of IEEE Conference on\nDecision and Control, pp. 5089-5094, 2014.\n[24] T. Hashimoto, Optimal Feedback Control Method Using Magnetic Force\nfor Crystal Growth Dynamics, International Journal of Science and\nEngineering Investigations, Vol. 4, Issue 45, pp. 1-6, 2015.\n[25] T. Hashimoto, R. Satoh and T. Ohtsuka, Receding Horizon Control\nfor Spatiotemporal Dynamic Systems, Mechanical Engineering Journal,\nVol. 3, No. 2, 15-00345, 2016.\n[26] T. Hashimoto, I. Yoshimoto, T. Ohtsuka, Probabilistic Constrained\nModel Predictive Control for Schr\u00a8odinger Equation with Finite\nApproximation, Proceedings of SICE Annual Conference, pp.\n1613-1618, 2012.\n[27] T. Hashimoto, Probabilistic Constrained Model Predictive Control for\nLinear Discrete-time Systems with Additive Stochastic Disturbances,\nProceedings of IEEE Conference on Decision and Control, pp.\n6434-6439, 2013.\n[28] T. Hashimoto, Computational Simulations on Stability of Model\nPredictive Control for Linear Discrete ...
Recent technological advance has prompted significant<br> interest in developing the control theory of quantum systems.<br> Following the increasing interest in the control of quantum<br> dynamics, this paper examines the control problem of Schrödinger<br> equation because quantum dynamics is basically governed by<br> Schrödinger equation. From the practical point of view, stochastic<br> disturbances cannot be avoided in the implementation of control<br> method for quantum systems. Thus, we consider here the robust<br> stabilization problem of Schrödinger equation against stochastic<br> disturbances. In this paper, we adopt model predictive control method<br> in which control performance over a finite future is optimized with<br> a performance index that has a moving initial and terminal time.<br> The objective of this study is to derive the stability criterion for<br> model predictive control of Schrödinger equation under stochastic<br> disturbances.