- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Description
<jats:p>It is known that there is no extremal singly even self-dual $[n,n/2,d]$ code with minimal shadow for $(n,d)=(24m+2,4m+4)$, $(24m+4,4m+4)$, $(24m+6,4m+4)$, $(24m+10,4m+4)$ and $(24m+22,4m+6)$. In this paper, we study singly even self-dual codes with minimal shadow having minimum weight $d-2$ for these $(n,d)$. For $n=24m+2$, $24m+4$ and $24m+10$, we show that the weight enumerator of a singly even self-dual $[n,n/2,4m+2]$ code with minimal shadow is uniquely determined and we also show that there is no singly even self-dual $[n,n/2,4m+2]$ code with minimal shadow for $m \ge 155$, $m \ge 156$ and $m \ge 160$, respectively. We demonstrate that the weight enumerator of a singly even self-dual code with minimal shadow is not uniquely determined for parameters $[24m+6,12m+3,4m+2]$ and $[24m+22,12m+11,4m+4]$.</jats:p>
Journal
-
- The Electronic Journal of Combinatorics
-
The Electronic Journal of Combinatorics 25 2018-01-25
The Electronic Journal of Combinatorics
- Tweet
Details 詳細情報について
-
- CRID
- 1873398392951390720
-
- ISSN
- 10778926
-
- Data Source
-
- OpenAIRE