Structural Design of the Geometrical Shape of Interfaces in Bonded Dissimilar Materials Based on Theoretical Elastic Analysis

この論文をさがす

説明

<jats:title>ABSTRACT</jats:title><jats:p>In order to evaluate the practical strength of a joint and its fracture mode, it is important to find the stress distribution near the edge of the interface by analyses of strength and fracture. The index of stress singularity based on theoretical analysis is a useful tool to indicate the stress distribution.</jats:p><jats:p>In this paper, investigations on the evaluation of the practical strength of bonded dissimilar materials based on the stress singularity are carried out. The secant stiffness module, which was used for plastics analysis, was applied to the evaluation of thermal elastoplastic behavior near the interface. Spherical conditions of the interface shape were used for the evaluation of stress behavior and the experiment of bonding strength. The relationship between the index of stress singularity, λ, and the practical strength of the bonded TiB<jats:sub>2</jats:sub>-Ni system was investigated by comparing theoretical λ, which was determined by substituting the secant stiffness module into Bogy's eigenequation, with the practical strength in the edge angle of the interface between 60° and 90° The correlation factor of the relationship between λ and the practical bonding strength of the TiB<jats:sub>2</jats:sub>-Ni system was found positive. These results show that the structural design of a geometrical interface which is getting a higher strength joint based on the index of stress singularity is verified experimentally.</jats:p>

収録刊行物

  • MRS Proceedings

    MRS Proceedings 586 1999-01-01

    Springer Science and Business Media LLC

詳細情報 詳細情報について

  • CRID
    1873679867314535040
  • DOI
    10.1557/proc-586-273
  • ISSN
    19464274
    02729172
  • データソース種別
    • OpenAIRE

問題の指摘

ページトップへ