- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
An Efficient Construction of a Compression Function for Cryptographic Hash
Description
A cryptographic hash $$\left( \text {CH}\right) $$ is an algorithm that invokes an arbitrary domain of the message and returns fixed size of an output. The numbers of application of cryptographic hash are enormous such as message integrity, password verification, and pseudorandom generation. Furthermore, the $$\mathrm {CH}$$ is an efficient primitive of security solution for IoT-end devices, constrained devices, and RfID. The construction of the $$\mathrm {CH}$$ depends on a compression function, where the compression function is constructed through a scratch or blockcipher. Generally, the blockcipher based cryptographic hash is more applicable than the scratch based hash because of direct implementation of blockcipher rather than encryption function. Though there are many $$\left( n, 2n\right) $$ blockcipher based compression functions, but most of the prominent schemes such as MR, Weimar, Hirose, Tandem, Abreast, Nandi, and ISA09 are focused for rigorous security bound rather than efficiency. Therefore, a more efficient construction of blockcipher based compression function is proposed, where it provides higher efficiency-rate including a satisfactory collision security bound. The efficiency-rate $$\left( r\right) $$ of the proposed scheme is $$r \approx 1$$. Furthermore, the collision security is bounded by $$q=2^{125.84}$$ $$\left( q=\text {numer of query}\right) $$. Moreover, the proposed construction requires two calls of blockcipher under single iteration of encryption. Additionally, it has double key scheduling and it’s operational mode is parallel.
Part 1: The International Cross Domain Conference (CD-ARES 2016)
International audience
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1873679867362632448
-
- Data Source
-
- OpenAIRE