Description
<jats:p>In this study, control over the wake flow of a single square cylinder exercised by a flat plate attached to the rear side of the cylinder is analyzed numerically via the lattice Boltzmann method. The Reynolds number (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:mrow><mml:mi>R</mml:mi><mml:mi>e</mml:mi></mml:mrow></mml:math></jats:inline-formula>) is fixed at 150, and the length of the plate is varied from 0.1 to 8.5. Three distinct flow modes are observed in this study: unsteady, transient, and steady flow in the cases of plate lengths (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m2"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math></jats:inline-formula>) in the ranges 0.1 <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m3"><mml:mrow><mml:mo>≤</mml:mo></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m4"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m5"><mml:mrow><mml:mo>≤</mml:mo></mml:mrow></mml:math></jats:inline-formula> 6.5, 6.75 <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m6"><mml:mrow><mml:mo>≤</mml:mo></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m7"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m8"><mml:mrow><mml:mo>≤</mml:mo></mml:mrow></mml:math></jats:inline-formula> 7.5, and 7.75 <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m9"><mml:mrow><mml:mo>≤</mml:mo></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m10"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m11"><mml:mrow><mml:mo>≤</mml:mo></mml:mrow></mml:math></jats:inline-formula> 8.5, respectively. The streamlines exhibit different flow structures, termed hairpin-like, ellipse-like, and elongated bubble-like, at different values of <jats:italic>L</jats:italic>. Complete wake control is achieved at plate lengths beyond 7.75. This study reveals that the drag and lift coefficients exhibit unsteadiness at short plate lengths in early time steps, but as the plate length increases, unsteadiness slows down and eventually disappears, confirming the steady flow pattern. The mean drag coefficient (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m12"><mml:mrow><mml:mi>C</mml:mi><mml:msub><mml:mi>D</mml:mi><mml:mi>m</mml:mi></mml:msub></mml:mrow></mml:math></jats:inline-formula>), Strouhal number (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m13"><mml:mrow><mml:mi>S</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:math></jats:inline-formula>), and root-mean-square value of drag and lift coefficients (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m14"><mml:mrow><mml:mi>C</mml:mi><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>r</mml:mi><mml:mi>m</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>; <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m15"><mml:mrow><mml:mi>C</mml:mi><mml:msub><mml:mi>L</mml:mi><mml:mrow><mml:mi>r</mml:mi><mml:mi>m</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>) are reduced by maximums of 23.5%, 100%, 84.6%, and 99.5%, respectively, as a result of the presence of the plate.</jats:p>
Journal
-
- Frontiers in Physics
-
Frontiers in Physics 11 2023-04-03
Frontiers Media SA
- Tweet
Keywords
- cylinder
- Artificial intelligence
- Physics
- QC1-999
- plate
- Computational Mechanics
- Cylinder Wake
- Aerospace Engineering
- FOS: Mechanical engineering
- Flow Control
- Computer science
- laminar
- Algorithm
- Engineering
- flow
- Physical Sciences
- vortex shedding
- Vortex-Induced Vibrations in Fluid Flow
- Lattice Boltzmann Method
- Aerodynamics of High-Speed Trains and Vehicles
- Lattice Boltzmann Method for Complex Flows
Details 詳細情報について
-
- CRID
- 1873679867530811136
-
- ISSN
- 2296424X
-
- Data Source
-
- OpenAIRE