Averaging and fluctuations for parabolic equations with rapidly oscillating random coefficients

この論文をさがす

説明

In this paper we consider the parabolic equation with random coefficients: $$D_t u^\varepsilon (t,x) = \sum\limits_{ij} {a_{ij} } \left( {\frac{t}{\varepsilon }\user2{,}x,\omega } \right)D_{x_i x_j } u^\varepsilon (t\user2{,}x) + \sum\limits_i {b_i } \left( {\frac{t}{\varepsilon }\user2{,}x,\omega } \right)D_{x_i } u^\varepsilon (t\user2{,}x).$$ We show that ue(t,x) converges to the solution uo(t,x) of the averaging equation: $$D_t u^0 (t,x) = \sum\limits_{ij} E \left( {a_{ij} \left( {\frac{t}{\varepsilon }\user2{,}x,\omega } \right)} \right)D_{x_i x_j } u^0 (t\user2{,}x) + \sum\limits_i {E\left( {b_i \left( {\frac{t}{\varepsilon }\user2{,}x,\omega } \right)} \right)} D_{x_i } u^0 (t\user2{,}x).$$ Also, the fluctuation process \(y^\varepsilon (t,x)\left( { \equiv \left( {u^\varepsilon (t,x)--u^0 (t\user2{,}x)} \right)/\sqrt \varepsilon } \right)\) converges weakly to a generalized Ornstein-Uhlenbeck process on L′.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1873679867947083776
  • DOI
    10.1007/bf00319294
  • ISSN
    14322064
    01788051
  • データソース種別
    • OpenAIRE

問題の指摘

ページトップへ