- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Chemical modification at and within nanopowders: Synthesis of core‐shell Al<sub>2</sub>O<sub>3</sub>@Ti<scp>ON</scp> nanopowders via nitriding nano‐(TiO<sub>2</sub>)<sub>0.43</sub>(Al<sub>2</sub>O<sub>3</sub>)<sub>0.57</sub> powders in <scp>NH</scp><sub>3</sub>
Search this article
Description
<jats:title>Abstract</jats:title><jats:p>Here, we demonstrate the potential utility of using chemical modification to reorganize metastable nanoparticles into nanostructured nanoparticles without coincidentally inducing extensive necking/sintering. The motivation for this effort derives from the concept that chemical reduction in a single component in a mixed‐metal nanoparticle will create segregated islands of a second immiscible phase. Given the very high chemical energies inherent in nanoparticles, the formation of even smaller islands of a second phase can be anticipated to lead to extremely high interfacial energies that may drive these islands to diffuse to cores or surfaces to form core‐shell structures that minimize such interfacial energies. Thus, ammonolysis of (TiO<jats:sub>2</jats:sub>)<jats:sub>0.43</jats:sub>(Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>)<jats:sub>0.57</jats:sub> composition nanopowders where both elements are approximately uniformly mixed at atomic length scales, under selected conditions (1000°C) for various periods of time at constant <jats:styled-content style="fixed-case">NH</jats:styled-content><jats:sub>3</jats:sub> flow rates leads primarily to the reduction in the Ti species to form TiN or Ti<jats:styled-content style="fixed-case">ON</jats:styled-content> which then appears to diffuse to the surface of the particles. The final products consist of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>@Ti<jats:styled-content style="fixed-case">ON</jats:styled-content> core‐shell nanopowders that remain mostly unaggregated pointing to a new mechanism for modifying nanopowder chemistries and physical properties.</jats:p>
Journal
-
- Journal of the American Ceramic Society
-
Journal of the American Ceramic Society 101 1441-1452, 2017-11-16
Wiley
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1873961342585304832
-
- ISSN
- 15512916
- 00027820
-
- HANDLE
- 2027.42/142336
-
- Data Source
-
- OpenAIRE