- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
On feature extraction for limited class problem
Description
The availability of the canonical discriminant analysis to a limited class problem is restricted because the number of extracted features can not be or exceed the number of classes. In order to remove the restriction, a new feature extraction technique FKL is proposed and is tested by handwritten numeral recognition experiment. While the canonical discriminant analysis maximizes the variance ratio (F-ratio), and the principal component analysis (K-L expansion) minimizes the mean square error of dimension reduction, the FKL optimizes both the F-ratio and the mean square error simultaneously. The result of experiment shows that the FKL provides the richest features in discriminating power for the limited class problem when compared with other techniques including the canonical discriminant analysis, the principal component analysis, and the orthonormal discriminant vector method (ODV).
Journal
-
- Proceedings of 13th International Conference on Pattern Recognition
-
Proceedings of 13th International Conference on Pattern Recognition 191-194 vol.2, 1996-01-01
IEEE