- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
A New Family of String Classifiers Based on Local Relatedness
Description
This paper introduces a new family of string classifiers based on local relatedness. We use three types of local relatedness measurements, namely, longest common substrings (LCStr's), longest common subsequences (LCSeq's), and window-accumulated longest common subsequences (wLCSeq's). We show that finding the optimal classier for given two sets of strings (the positive set and the negative set), is NP-hard for all of the above measurements. In order to achieve practically efficient algorithms for finding the best classifier, we investigate pruning heuristics and fast string matching techniques based on the properties of the local relatedness measurements.