- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
A self-organizing neural structure for concept formation from incomplete observation
Description
We propose a self-organizing neural structure with dynamic and spatial changing weights for a feature space representation of concept formation. An essential core of this self-organization is based on an unsupervised learning with incomplete information for the dynamic changing and an extended Hebbian rule for the spatial changing. A concept formation problem requires the neural network to acquire the complete feature space structure of a concept information using an incomplete observation of the concept. The connection structure or self-organizing network can store with the information structure by using the two rules. The Hebbian rule can create a necessary connection corresponding to a feature space substructure of the complete information. On the other hand, unsupervised learning can delete unnecessary connections. Finally concept formation ability of the proposed neural network is proven under some conditions.
Journal
-
- Proceedings of the International Joint Conference on Neural Networks, 2003.
-
Proceedings of the International Joint Conference on Neural Networks, 2003. 4 2615-2618, 2004-06-22
IEEE